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A computational methodology for optimization of fin shapes is formulated and demonstrated in the con-
text of steady, laminar, fully-developed forced convection in a straight duct of circular cross-section, with
air as the fluid and non-twisted, uninterrupted, longitudinal internal fins made of steel, aluminium, and
copper. The governing equations are solved using finite volume methods. The fins shapes are approxi-
mated using non-uniform rational B-splines, with the control points as design variables. A gradient-based
method is used for the optimization. Results pertaining to the maximization of suitably defined thermal
performance, subject to constant pumping power per unit length, are presented and discussed.
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1. Introduction

A computational methodology for the optimization of conjugate
convective and conductive heat transfer in internally finned ducts
is formulated and demonstrated in this paper. The particular opti-
mization criterion used is the maximization of the thermal perfor-
mance for a fixed specified value of the pumping power per unit
length. However, the proposed methodology can be adapted to
work with other suitable optimization criteria. In internally finned
ducts, the pumping power needed to achieve the desired rate of
fluid flow is influenced by the following parameters: number, base
thickness, height (or length), and shape of the fins; shape and other
geometric parameters of the flow passage; and thermofluid prop-
erties of the fluid. These parameters, as well as the thermal con-
ductivities of the fin material and fluid, and the thermal
boundary conditions influence the rate of heat transfer from the
internally finned duct to the fluid, or vice versa. Hence, all combi-
nations of these parameters must be explored to find one that
meets the specified thermal optimization criterion.

Internal fins are routinely used to enhance heat transfer in ducts
encountered in a wide variety of energy conversion, exchange, and
storage equipment used in the chemical, aeronautical, automotive,
and heating, ventilating and air-conditioning (HVAC) industries, as
is discussed in the works of Kays and London [1], Hesselgreaves [2],
ll rights reserved.
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and Shah et al. [3]. They are also used in recuperators of industrial
gas turbine engines, cooling systems for electronics, thermal and
nuclear power plants, and biomedical equipment [1–4]. Bergles
[4] has reviewed the historical background, driving trends, and
benefits of numerous heat transfer enhancement techniques, and
stated that analytical or numerical prediction techniques should
be used to effectively develop improved heat transfer surfaces.
Based on these observations, it may be concluded that a relatively
simple-to-implement and cost-effective computational methodol-
ogy for the optimization of the thermal performance of internally
finned ducts could yield a wide range of benefits.

Examples of computational investigations of fluid flow and heat
transfer in a variety of plate-fin ducts include the works of Sparrow
et al. [5], Patankar et al. [6], Patankar and Prakash [7], Kelkar and
Patankar [8], Amon et al. [9], Suzuki et al. [10], Zhang et al. [11],
Acharya et al. [12], DeJong et al. [13], Saidi and Sundén [14], Shah
et al. [3], and Lamoureux and Baliga [15], among others. The works
of Masliyah and Nandkumar [16] and Soliman et al. [17] are exam-
ples of some early computational investigations of laminar, fully-
developed, forced convection in straight tubes (of circular cross-
section) with internal fins of triangular cross-section. Patankar
et al. [18] used a mixing-length model and a finite volume method
to analyze fully-developed turbulent flow and heat transfer in
tubes and annuli with longitudinal internal fins. Webb and Scott
[19] have conducted a parametric analysis of forced convection
in internally finned tubes. Baliga and Azrak [20] have determined
the characteristics of laminar fully-developed flow and heat
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Nomenclature

Ac-s cross-sectional area available for fluid flow in the ducts
C NURBS curve vector
cp specific heat at constant pressure
Dh hydraulic diameter
f(X) objective function
fDarcy Darcy friction factor
g(X) constraint function
h control point height above the fin symmetry plane
hav average heat transfer coefficient
k thermal conductivity
l* normalized fin length
lf fin length
Ni,p NURBS basis function of pth degree associated with con-

trol point i
nfin number of fins
Nu Nusselt number
p static pressure
P reduced pressure
P vector of NURBS control points
Periwetted wetted perimeter of Ac-s

pp pumping power per unit length
pptarget target (desired) pumping power per unit length
Pr Prandtl number
q0 rate of heat input per unit axial length of duct
r radius of the circular cross-section of the duct
Re Reynolds number
S normalized search-direction vector
T temperature
u, v velocity components in the x and y directions, respec-

tively
U NURBS knot vector
w axial velocity component
W dimensionless axial velocity component
x Cartesian coordinate
X dimensionless Cartesian coordinate
X design vector

y Cartesian coordinate
Y dimensionless Cartesian coordinate
z Cartesian coordinate along the axial direction
z* dimensionless Cartesian coordinate along the axial

direction

Greek letters
D fin thickness
e convergence criterion
N dimensionless coordinate along the centerline of the fin
g(H), g(T) thermal performance enhancement indices for the (H)

and (T) boundary conditions
h dimensionless temperature for the (H) thermal bound-

ary condition
k step size
l dynamic viscosity of the fluid
q density of the fluid
r half-angle of the fin base
u dimensionless temperature for the (T) thermal bound-

ary condition
X local fin conductance

Subscripts
av average value
b bulk value
f fluid
fin pertaining to the fin
w pertaining to the duct wall
\ perpendicular or normal component

Superscripts
(H) pertaining to the thermal boundary condition involving

uniform heat input per unit axial length and uniform
duct wall temperature in any cross-section

(T) pertaining to the thermal boundary condition involving
constant duct wall temperature, axially and peripherally
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transfer in straight, uninterrupted, plate-fin ducts of triangular
cross-section. Zhang and Faghri [21] have conducted a numerical
study of internally finned tubes for applications in latent heat ther-
mal energy storage systems. Heat transfer enhancement using fins
in the microscale regime for applications in electronics has been
investigated by Chou et al. [22]. The aforementioned studies have
improved the understanding of fluid flow and heat transfer in
internally finned ducts, and also elucidated the mechanisms
responsible for enhancements of the rates of heat transfer relative
to those in ducts without internal fins. However, no efforts were
made in these studies to specifically optimize the thermal perfor-
mance of these internally finned ducts.

Optimization techniques in engineering started to become
increasingly well-established and used in the late 1950s, with the
advent of digital computers. Over the last two decades, several pub-
lications have focused on overall reviews, recent advances, and spe-
cific applications of optimization techniques such as the Simplex,
gradient-based, Lagrange multiplier, and evolutionary or genetic
algorithms, and also constructal theory. Examples of such publica-
tions include the works of Pironneau [23], Rao [24], Jameson et al.
[25], Fabri [26,27], Bejan [28], Deb [29], Onwubolu and Babu [30],
Mohammadi and Pironneau [31], Bobaru and Rachakonda [32,33],
Bejan and Lorente [34], Dias and Milanez [35], Hilbert et al. [36],
Lorenzini and Rocha [37], Duvigneau et al. [38], Janiga [39], Tye-
Gingras and Gosselin [40], Shinohara et al. [41], and da Silva and
Gosselin [42]. A related topic, which also has very useful applica-
tions in engineering, is the solution of inverse heat transfer prob-
lems, where the objective is to obtain a design that produces
desired measurements or results as precisely as possible. This topic
is covered in the works of Kurpisz and Nowak [43], Özisik and Or-
lande [44], and Ashrafizadeh et al. [45,46], among others.

Constructal theory has been used to optimize assemblies or ar-
rays of fins of fixed geometrical shapes, such as T- and Y-shaped
fins in the work of Lorenzini and Rocha [37], for example. The opti-
mized arrays or assemblies have fractal like features, akin to those
displayed by natural flow structures [28,34]. There have also been
studies on the optimal spacing between fins of fixed rectangular
shape on a vertical wall under natural convection conditions, such
as those in the works of Bar-Cohen [47] and Bar-Cohen and
Rohsenow [48], for example. In the work of Razelos and Krikkis
[49], a procedure for the optimization of the thermal design of lon-
gitudinal fins of rectangular cross-section is presented.

A study by Tsukamoto and Seguchi [50] is among the first ones
in which the optimal shape of cooling fins is considered. They
numerically solved a quasi one-dimensional model of heat conduc-
tion in the fin and approximated the fin shape with a second-order
polynomial, the coefficients of which were the design variables.
More recently, optimization of the shape of convectively cooled
fins has been carried out by Bobaru and Rachakonda [32,33] using
an element-free Galerkin (EFG) method for the analysis of heat



Fig. 1. Representative cross-section of an internally finned duct and the coordinate
systems used in the mathematical models.
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conduction within the fin. However, they used semi-empirical cor-
relations for calculating the distribution of the heat transfer coeffi-
cient on the surface of the fins: this approach may work reasonably
well under some conditions of external convection on the surfaces
of fins, but it is not well-suited for the thermal optimization of
internally finned ducts, for which it is important to solve the con-
jugate problem of heat conduction within the fin and convection in
the fluid [20].

Lorenzini et al. [51] and Fabri [26,27,52,53] have proposed and
illustrated the use of genetic algorithms for optimizing the shape
of fins attached to planar surfaces, in the context of fully-developed
laminar flow. In these studies, the fin surface was approximated by a
polynomial, and the design variables were the polynomial coeffi-
cients. They found that the optimal fins have undulated or rippled
shapes, and the number and size of the undulations and also the in-
crease in the fin thermal effectiveness, relative to a reference fin of
rectangular shape, depend on the order of the polynomial that is
used to approximate the fin profile. It should also be noted that ge-
netic (or evolutionary) algorithms are well-suited for the solution
of multi-objective optimization problems and operate on the entire
allowed design space, but they require a large number of simulations
and thus have a high computational cost. Therefore, though genetic
algorithms coupled with computational fluid dynamics methods
have been used successfully for the solution of multi-objective opti-
mization problems, they are still not considered as a practical opti-
mization tool for engineering applications [36,39,54].

In the proposed computational methodology for the optimiza-
tion of internally finned ducts, the shapes of the internal fins are
approximated by non-uniform rational B-splines (NURBS) [55],
with the control points as design variables, and a two-stage itera-
tive solution technique is used: in the first stage, a control-volume
finite element method (CVFEM) [56,57] and a finite volume meth-
od (FVM), both inspired by the seminal contributions of Spalding
[58], Patankar and Spalding [59], and Patankar [60], are used to
solve the so-called direct problem, namely, the mathematical mod-
els of conjugate convection in the fluid and quasi one-dimensional
conduction inside the fins, respectively; in the second stage, an
optimization algorithm, based on a gradient approach and inputs
from solutions of the aforementioned direct problem, is used to
calculate a new geometry of the internally finned duct that moves
it towards the desired design. These two stages are used sequen-
tially and repeatedly (iteratively) until the solution is optimal
within a specified tolerance. In this context, it should be noted that
the gradients required in the optimization algorithm of the pro-
posed methodology may be obtained using either direct numerical
differentiation (of results yielded by solutions of the intermediate
direct problems), continuous sensitivity equations (CSE), or adjoint
methods [25,38,41,61]. The direct numerical differentiation meth-
od is computationally expensive, as it requires inputs from several
solutions of the direct problem in every step of the overall optimi-
zation procedure. However, it is relatively simple to implement.
Therefore, it was used to solve the demonstration problem in this
work. On the other hand, the CSE and adjoint methods are more
challenging to implement correctly, but require relatively lower
computing times, if implemented efficiently [25,38,41]: thus, they
are recommended for a practical implementation of the proposed
computational methodology.

The proposed overall computational methodology does not de-
pend on any specific internally finned duct flow and heat transfer
problem. In this paper, it is demonstrated in the context of steady,
fully-developed, laminar forced convection in straight ducts of cir-
cular cross-section, with non-twisted, continuous, longitudinal
fins. Air is the working fluid, and the fin materials explored are
stainless steel, aluminium, and copper. The reasons for the choice
of this particular demonstration problem are the following: it is
conceptually simple, yet practical; the mathematical models for
the associated fluid flow and heat transfer are well established;
and it provides a relatively convenient and computationally inex-
pensive way of illustrating the benefits of the proposed optimiza-
tion methodology.

2. Fluid flow and heat transfer in the demonstration problem:
mathematical models and numerical solution methods

A representative cross-section of the internally finned ducts con-
sidered in the demonstration problem is schematically illustrated in
Fig. 1. The fins shown in this figure are of triangular cross-section, but
the shape of the fin cross-section in the optimized ducts can be quite
different. The equations and boundary conditions that govern the
fluid flow and heat transfer phenomena in this problem are pre-
sented first in the context of the following assumptions: (i) in the
range of operation considered, the fluid (air) behaves as a Newtonian
fluid, and the thermophysical properties of this fluid and also those
of the fin material (pegged to average values) are essentially con-
stant; (ii) in the axial direction, heat conduction inside the fluid, duct
wall, and fins is negligible compared to advection in this direction
and conduction in the radial direction; (iii) viscous dissipation in
the fluid is negligible; (iv) steady, fully-developed, laminar fluid flow
and heat transfer prevail; and (v) in the duct cross-section, with air as
the working fluid, metal fins (stainless steel, aluminum, and copper),
and the geometric parameters investigated, heat conduction inside
each fin is essentially quasi one-dimensional in the direction of its
centerline [20,62,63]. Following the presentation of these mathe-
matical models, synopses of the numerical methods that were used
to solve them are presented.

2.1. Equations governing the fluid flow

With respect to the cross-section of the internally finned duct
and the Cartesian coordinate system depicted in Fig. 1, and in the
context of the above-mentioned assumptions, in the fully-devel-
oped flow region, the velocity components in the x and y directions
are zero (u = v = 0), the velocity component in the z direction, w, is
a function of x and y only (independent of z, as indicated by the
continuity equation, ow/oz = 0), and the z-momentum equation re-
duces to the following form [64,65]:

0¼�@p
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In this equation, p is the static pressure; q and l are the density and
dynamic viscosity of the fluid, respectively; gx, gy, and gz are the x, y,
and z components, respectively, of the gravitational acceleration
vector; and P is the reduced pressure [64]. In the fully developed re-
gion, the reduced pressure, P, is constant in any cross-sectional
plane of the duct and drops linearly with z [64,65]: �dP/
dz = constant > 0.

2.2. Energy equation in the fluid

Again in the context of the aforementioned assumptions, and
with respect to the cross-section of the internally finned duct
and the Cartesian coordinate system depicted in Fig. 1, in the ther-
mally fully developed region, the energy equation in the fluid re-
duces to the following form [64,65]:

qcpw
@T
@z
¼ @

@x
kf
@T
@x

� �
þ @

@y
kf
@T
@y

� �
ð2Þ

In this equation, T is the temperature, cp is the specific heat at con-
stant pressure, and kf is the thermal conductivity of the fluid.

2.3. Energy equation in the fins

In any cross-section of the duct, a quasi one-dimensional for-
mulation [62,63] is used to model heat conduction inside the fins,
following the approach adopted by Baliga and Azrak [20] for inves-
tigating triangular plate-fin ducts. The conditions necessary for the
validity of quasi one-dimensional fin theory [62,63] are assumed to
be met in the demonstration problem. This assumption is made
mainly for economy of computational effort in the illustration of
the proposed optimization methodology: in problems where this
assumption is invalid, a two-dimensional heat conduction equa-
tion must be solved in the fin [62,63], and the related computa-
tional effort would be much higher than that need for solving the
quasi one-dimensional problem considered here.

In the context of the aforementioned assumptions, and with re-
spect to the duct cross-section and the related nomenclature illus-
trated in Fig. 1, the energy equation in the each fin reduces to the
following form:

d
dn

dfinkfin
dTfin

dn

� �
¼ �2kf

@T
@g

� �
fluid;g¼0

ð3Þ

In this equation, Tfin is the quasi one-dimensional temperature inside
the fin; kfin is the thermal conductivity of the fin material; n is a coor-
dinate along the centreline of the fin in the duct cross-section, with its
origin at the fin base and increasing in the direction of its tip, as shown
in Fig. 1; g is the local coordinate normal to the fin surface at all points
along it, with its origin at the fin surface and increasing in the direc-
tion of the fluid, as shown in Fig. 1; dfin is the local fin thickness at n;
and (oT/og)fluid,g = 0 is the local normal (g-direction) temperature gra-
dient in the fluid at the surface of the fin.

2.4. Boundary conditions

2.4.1. Fluid flow
In the fully-developed flow region, u = v = 0, and the boundary

conditions on the z-direction component of the fluid velocity, w,
are the following: along the duct wall and fin surfaces, the no-slip
condition applies and w = 0; along symmetry surfaces, r\w = 0,
where r\w is the gradient of w normal to the symmetry surface
at the point under consideration.

2.4.2. Thermal
At each point located on the interface between the fluid and a

fin, the fin and fluid temperature are the same, as are the corre-
sponding normal heat fluxes. Along symmetry surfaces, r\T = 0,
where r\T is the gradient of T normal to the symmetry surface
at the point under consideration. At the duct wall-fluid interface,
the following two boundary conditions, which represent the ex-
tremes of the conditions that yield corresponding thermally
fully-developed regimes [66], are considered:

(H): Uniform rate of heat input per unit axial length
ðq0w ¼ constantÞ and duct wall temperature, Tw, uniform in the
cross-section being considered, but varying axially.
(T): Uniform duct wall temperature axially and peripherally
(Tw = constant).
2.5. Dimensionless formulation

2.5.1. z-Momentum equation
Following Shah and London [65], Patankar [60], and Kays and

Crawford [64], the following dimensionless variables are
introduced:

X ¼ x=Dh; Y ¼ y=Dh; W ¼ wl=fð�dP=dzÞðDhÞ2g;
Dh ¼ 4Ac-s=Periwetted ð4Þ

Here, Ac-s is the cross-sectional area for fluid flow and Periwetted is
the wetted perimeter around this area (total length of the solid-
fluid interface portion of Ac-s). Introducing these dimensionless vari-
ables in Eq. (1) and rearranging, the following dimensionless form
of the z-momentum equation is obtained:

@2W

@X2 þ
@2W

@Y2 þ 1 ¼ 0 ð5Þ

The boundary conditions on W are the following: W = 0 on the
duct wall and the fin surfaces; and along symmetry surfaces,
r\W = 0.

The only free dimensionless parameters in the fluid flow prob-
lem are those that characterize the cross-sectional geometry of the
internally finned duct, which come into play when the boundary
conditions are imposed. However, as the focus in this demonstra-
tion problem is on laminar flows, it is important to ensure that
the value of the Reynolds number satisfies the following condition:

Re¼D qwavDh=l � 2000 ð6Þ

The constant axial gradient of the reduced pressure in the fully
developed region is expressed in dimensionless form as the Darcy
friction factor, and the product of this friction factor and the Rey-
nolds number is a constant for a given set of geometric parameters
[64,65]:

fDarcy¼D fð�dP=dzÞDhg=ðqw2
av=2Þ;

f DarcyRe ¼ ð2ð�dP=dzÞðDhÞ2Þ=ðlwavÞ ¼ ð2=WavÞ ð7Þ
2.5.2. Energy equations
The axial variations of the temperature for the two aforemen-

tioned thermal boundary conditions, (H) and (T), are different
[60,62–64]. Thus, the dimensionless mathematical models for
these two boundary conditions are formulated differently, as de-
scribed in the following subsections.

2.5.2.1. (H) Boundary condition. For this boundary condition, in the
thermally fully developed region, all temperatures (in the fluid, fin,
and duct wall) rise linearly with z [64–66]. Thus, with Tb and Tw

denoting the fluid bulk and the duct wall temperatures, respec-
tively, the following equation applies:

@T
@z
¼ dTb

dz
¼ dTw

dz
¼ constant ð8Þ
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Furthermore, an energy balance on a slice of the duct yields:

qwavAc-scp
dTb

dz
¼ q0w ð9Þ

At this stage, the following dimensionless temperature is intro-
duced [60,64–66]:

h ¼ ðTw � TÞ=ðq0w=kf Þ ð10Þ

For the (H) boundary condition, h is independent of the axial posi-
tion along the duct (not a function of z) [60,64–66]. Thus, using X,
Y, W, h, and Dh in Eqs. (2) and (3), and rearranging, the dimension-
less energy equations in the fluid and the fin can be obtained and
cast in the following forms, respectively:

@2h

@X2 þ
@2h

@Y2 þ 4
Dh

Periwetted

W
Wav

¼ 0 ð11Þ

d
dN

X
dhfin

dN

� �
¼ � @h

@N

� �
fluid;N¼0

; X ¼ ðdfin=2Þkfin

Dhkf
ð12Þ

In Eq. (12), N = n/Dh, N = g/Dh, and X is a dimensionless fin conduc-
tance based on its local half-thickness (dfin/2) at N. On the duct wall,
T = Tw, thus h = 0; and at symmetry surfaces, r\h = 0. At points
located on the interface between a fin and the fluid, the values of h
in the fin and the fluid are the same. It should also be noted that for
a given set of geometric parameters and X, once the dimensionless
velocity field (W/Wav) has been computed, the source term in Eq.
(11) can be obtained, and Eqs. (11) and (12), along with the aforemen-
tioned boundary conditions, can be solved for the h distribution.

With regard to processing of the results, the average Nusselt
number for this boundary condition, NuðHÞav , is related to the dimen-
sionless bulk temperature, hb, by the following equation:

NuðHÞav ¼
havDh

kf
¼ fðq

0
w=PeriwettedÞ=ðTw � TbÞgDh

kf

¼ ðDh=PeriwettedÞ
ðTw � TbÞ=ðq0w=kf Þ

¼ ðDh=PeriwettedÞ
hb

ð13Þ
Fig. 2. Calculation domain, bounded by two adjacent symmetry planes with an
angle of p/nfin between them, and related nomenclature.
2.5.2.2. (T) Boundary condition. For this boundary condition, the
duct wall temperature, Tw, is specified and constant throughout,
and a dimensionless axial coordinate, z*, and dimensionless tem-
perature, u, are used [60,64–66]:

z� ¼ ðz=DhÞ=ðRePrÞ; u ¼ ðTw � TÞ=ðTw � TbÞ; Pr ¼ lcp=kf ð14Þ

In this equation, Pr denotes the Prandtl number.
In this case, in the thermally fully developed region, the magni-

tude of all temperature differences (Tw � T), including (Tw � Tb), de-
cay exponentially with z [60,64–66]; and the local heat transfer
coefficient, h ¼ q00w=ðTw � TbÞ, its peripherally averaged value in
the cross-section of interest, hav, and u, all remain invariant with
z [60,64–66]. Thus,

ðTw � TbÞ ¼ A expð�Kz�Þ; dðTw � TbÞ
dz�

¼ �KðTw � TbÞ;

1
ðTw � TbÞ

@T
@z�
¼ Ku ð15Þ

In this equation, A and K are constants. Using X, Y, z*, u* = u/K, and
Eq. (15), the energy equations in the fluid and the fin, Eqs. (2) and
(3), respectively, can be cast in the following dimensionless forms:

@2u�

@X2 þ
@2u�

@Y2 þu�K
W

Wav
¼ 0 ð16Þ

d
dN

X
d/�fin
dN

� �
¼ � @/�

@N

� �
fluid;N¼0

; X ¼ ðdfin=2Þkfin

Dhkf
ð17Þ

InIn Eq. (17), N = n/Dh and N = g/Dh; and X is a dimensionless fin
conductance based on its local half-thickness (dfin/2) at N. On the
duct wall, T = Tw, thus u* = 0; and at symmetry surfaces, r\ u* = 0.
At points located on the interface between a fin and the fluid, the
values of u* in the fin and the fluid are the same. Furthermore,
ub = 1, thus u�b ¼ 1=K. Therefore, for a given set of geometric param-
eters, kf, and kfin, once the dimensionless velocity field (W/Wav) has
been computed, the u* field and K can be obtained using the follow-
ing iterative procedure recommended by Patankar [60]: (1) guess
an initial u* field, calculate u�b, and then obtain K ¼ 1=u�b; (2) using
the calculated value of K in Eq. (16), and the aforementioned
boundary conditions, solve Eqs. (16) and (17) for a new distribution
of u*; (3) calculate u�b, and obtain a new value of K ¼ 1=u�b; and (4)
return to Step (2), and repeat this procedure until convergence.
Once the u* field and K have been calculated in this manner, the
u field can be obtained using u = Ku*.

With regard to processing of the results, using the definition of
Dh in Eq. (4), the energy balance on a slice of the duct as expressed
in Eq. (9), and the relations given in Eq. (15), the average Nusselt
number for this case, NuðTÞav , can be related to K by the following
equation:

NuðTÞav ¼
havDh

kf
¼ fðq

0
w=PeriwettedÞ=ðTw � TbÞgDh

kf
¼ Ac�s

PeriwettedDh
K ¼ K

4

ð18Þ
2.6. Numerical solution methods

In numerical solutions of the aforementioned mathematical
models of steady, laminar, fully-developed flow and heat transfer
phenomena in the demonstration problem, the calculation domain
was limited to a representative portion of the duct cross-section,
bounded by two adjacent symmetry surfaces, as shown schemati-
cally in Fig. 2. The z-momentum equation, Eq. (5), and the energy
equations for the (H) and (T) thermal boundary conditions, Eqs.
(11) and (16), respectively, are akin to equations that govern stea-
dy conduction-type problems [60]. These equations were solved
using a control-volume finite element method (CVFEM) [56,57].
The quasi one-dimensional energy equations in the fin for the
(H) and (T) boundary conditions, Eqs. (12) and (17), respectively,
were solved using a finite volume method (FVM) [60]. Synopses
of these numerical solution methods are provided in this section.

2.6.1. Control-volume finite element method
The CVFEM used for the solution of the Eqs. (5), (11), and (16)

was formulated using the following six steps: (1) discretization
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of the portion of the calculation domain occupied by the fluid, first
into three-node triangular elements and then into polygonal con-
trol volumes surrounding the nodes (these control volumes are
created by joining the centroids of the triangular elements to the
midpoints of the corresponding sides), as shown in Figs. 3(a) and
(b); (2) integration of Eqs. (5), (11), and (16), in conjunction with
the corresponding boundary conditions, over each of the polygonal
control volumes to obtain integral momentum and energy conser-
vation equations; (3) storage of the values of W, h, and u* at the
nodes of the finite element mesh, and linear interpolation of these
nodal values in each triangular element; (4) in each three-node tri-
angular element, storage of the values of the corresponding source
terms at the centroid and assuming these values prevail over the
element; (5) use of the aforementioned interpolation functions
for the dependent variables and source terms to derive algebraic
approximations to the aforementioned integral momentum and
energy conservation equations; and (6) solution of these discret-
ized equations using suitable iterative methods. Full details of this
method are available in the works of Baliga and Patankar [56] and
Baliga and Atabaki [57], so they are not repeated here.

2.6.2. Finite volume method
This method was used to solve the quasi one-dimensional heat

conduction equations in the fin, Eqs. (12) and (17). The steps in its
formulation are the following: (1) discretization of the fin into con-
trol volumes and associated nodes that match up with the adjacent
portions of the polygonal control volumes and nodes of the afore-
mentioned CVFEM, as illustrated schematically in Fig. 3 (b); (2)
integration of Eqs. (12) and (17) over each of the control volumes
surrounding the nodes to obtain integral energy conservation
equations in the fin; (3) storage of h and u* at the nodes in the
fin, and piecewise-linear interpolation of these variables over the
grid lines between adjacent nodes; (4) storage of the fin conduc-
tance, X, at the nodes in the fin, and use of piecewise-linear inter-
polation between adjacent nodes to calculate the values of X at the
locations of the control-volume faces; (5) calculation and storage
of ð@u�=@NÞfluid;N¼0 at the nodes in the fin, using solutions generated
by the aforementioned CVFEM, and assuming that these values
prevail over the corresponding portions of the control-volume
boundary that fall along the fin-fluid interface; (6) use of the afore-
mentioned interpolation functions for h, u*, X, and ð@u�=@NÞfluid;N¼0

to derive algebraic approximations to the integral energy conserva-
tion equations in the fin; and (6) solution of these discretized equa-
tions using the tri-diagonal matrix algorithm [60].
Fig. 3. (a) Three-node triangular elements used in the discretization of the fluid
flow region and related nomenclature and (b) FVM grid in the fin and a portion of
the CVFEM mesh (with the three-node triangular elements and the associated
polygonal control volumes) in the adjacent fluid flow region.
3. Representation of the fin surface using non-uniform rational
B-splines (NURBS)

In order to modify or adjust the shape of the fins in the overall
optimization methodology, their surface (which is the interface be-
tween the fin and the fluid regions of the ducts) must first be de-
scribed mathematically. As was discussed earlier, in the
numerical solution of the demonstration problem, the calculation
domain was limited to the representative portion of a cross-section
of the duct shown in Fig. 2: in this calculation domain, the fin sur-
face is a curve. A single polynomial representation of this curve is
often inefficient or unsuitable for interactive shape design [55]. A
common practice for overcoming this difficulty is to split the curve
into multiple piecewise polynomials or rational curves, and set rules
that ensure continuity and smoothness at the locations where
these curves meet. Such curves are called splines. On a spline, the
locations in space where the piecewise curves meet are called
the control points: they can be conveniently expressed in vector
form as P = {P1, P2, . . . , Pi , . . ., Pn}. A polygon whose summits are
the control points is called the control polygon.

A spline in which each control point is associated with a basis
function is called a B-spline. These basis functions define the por-
tion of the spline that is affected by each control point, and allow
local modification of the shape of a curve (so only the portion of
the curve close to the control point is affected). Thus, on a B-spline,
each control point affects a user-defined portion of the curve and
they all have the same weight.

A generalised version of a B-spline is the so-called non-uniform
rational B-spline (NURBS), which is defined by its order, a set of
weighted control points, and a knot vector. The order of a NURBS
curve defines the number of nearby control points that influence
any given control point: the curve is represented by polynomial ba-
sis functions of degree one less than its order, and the number of
control points must be greater than or equal to the order. The knot
vector is a sequence of parameter values that determine where and
how the control points affect the NURBS curve along its length, and
is represented as follows: U = {u1, u2 , . . . , ui , . . . , un} 0 6 u 6 1. For
applications with a smooth continuous curve, a uniform knot vec-
tor, in which ui+1 � ui = constant, "i, is adequate, since by control-
ling the number and position of the control points and their
weights, the NURBS can be used to fit almost any shape [55]. This
type of knot vector is implemented for approximating the fin shape
in this work.

A pth degree NURBS curve can be expressed as follows:

CðuÞ ¼
Xn

i¼0

Ri;pðuÞPi; Ri;pðuÞ ¼ ðNi;pðuÞwiÞ
Xn

j¼0

Nj;pðuÞwj

 !
;

,

0 � u � 1 ð19Þ
where {Ri,p(u)} are rational basis functions of the NURBS curve, {Pi}
are the control points (forming a control polygon), and {wi} are the
weights associated with the control points. {Ni,p(u)} are the pth de-
gree B-spline basis functions associated with the control points and
defined on the following open uniform knot vector:

U ¼ fa; . . . ; a|fflfflfflffl{zfflfflfflffl}
pþ1

;upþ1; . . . ;un�p�1; b; . . . ; b|fflfflfflffl{zfflfflfflffl}
pþ1

g ð20Þ

where a = 0, b = 1 and wi > 0 for all i. Repeating the knot situated at
both ends of the vector p + 1 times ensures that the outer extreme
points of the curve fall on the control points tangentially at the two
end portions of the control polygon. In this work, the following
computationally convenient recurrence formula was used to pre-
scribe the basis functions:

Ni;0ðuÞ¼
0 if ui �u�uiþ1

1 otherwise
;

�
Ni;pðuÞ¼

u�ui

uiþp�ui
Ni;p�1ðuÞþ

uiþpþ1�u
uiþpþ1�uiþ1

Niþ1;p�1ðuÞ

ð21Þ
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In practice, the most commonly used NURBS curves are of
fourth order (cubic degree), as they are sufficient to approximate
rather complex shapes quite well [55]: these curves were also used
in this work. With respect to the demonstration problem, the
approximation of a representative fin shape in the calculation do-
main using an open uniform rational fourth-order B-spline curve
with six control points is shown in Fig. 4. The position of each con-
trol point Pi is defined by its radial distance from the wall of the cir-
cular duct, ri, and its elevation above the fin central symmetry
surface, hi. The first control point, P1, is situated directly on the
duct wall, so r1 = 0 and its height, h1, sets the fin half-width at its
base. The last control point, Pn, is situated directly on the fin central
symmetry surface, so that its height, hn, is 0, and its radial position
from the duct wall, rn, is equal to the length of the fin, lf. In the com-
puter simulations that were undertaken in this work, the radial
positions from the duct wall of the remaining interior control
points, ri, were distributed uniformly along the fin length, and
the weights, wi, of the control points were all set equal to one.
Thus, the following parameters were modified to change the shape
of the fin: the number of control points, n; the height of the first
(n � 1) control points, hi; and the radial position from the wall of
the nth control point, rn = lf. These parameters were adjusted in
the search for an optimal fin shape, as discussed in the following
section.
4. Formulation of the optimization problem

The problem of interest is a static, non-linear, multivariable
optimization problem, subject to an equality constraint and involv-
ing the maximization of an objective function that is specific to
each of the two boundary conditions, (H) and (T) [24]. The mathe-
matical formulation of this optimization problem can be expressed
in the following general form:

Find X¼

x1

x2

..

.

xn

8>>>><
>>>>:

9>>>>=
>>>>;

which maximizes f ðXÞ; subject to gðXÞ¼ constant

ð22Þ

In this equation, X is an n-dimensional design vector containing the
design variables, xi; f(X) is the objective function; and g(X) is the
equality constraint function. The n-dimensional space, in which
each coordinate axis represents a design variable, is called the de-
sign space, and each point X in it is called a design point. The design
variables, the objective functions, and the equality constraint con-
sidered in this study are presented concisely in this section.
Fig. 4. Approximation of the surface of a representative fin in the calculation
domain using an open uniform rational B-spline curve with six control points
(indicated by the symbol h and denoted as Pi), the three-node triangular elements
used in the CVFEM mesh in the fluid flow region, and related nomenclature.
4.1. Design variables

With reference to Fig. 4 and the NURBS approximation of the fin
surface discussed in the last section, the chosen design variables
were the heights of the first (n � 1) control points above the fin
symmetry surface, and the length of the fin for the nth control
point (lf = rn):

X ¼

x1

x2

..

.

xn�1

xn

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

h1

h2

..

.

hn�1

lf

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð23Þ

In order to avoid any possible dimensional inhomogeneity and large
differences in the magnitudes of the design variables, and related
difficulties [23,24], they were scaled and cast in dimensionless
forms with respect to their minimum and maximum values, as
follows:

x�i ¼ ðxi � xi;minÞ=ðxi;max � xi;minÞ ð24Þ

The minimum and maximum values, xi,min and xi,max, respectively,
for each variable depend on the particular optimization problem
being solved, and they are set by reference to either physical limits
(for example, a length can not be lower than 0), structural integrity
requirements (for example, a minimum thickness of the fin), or geo-
metric limits (for example, a limit on the maximum thickness of the
fin). Each dimensionless design variable, x�i , must lie between 0 and
1. If the value of any x�i falls outside this allowed range during any
stage of the iterative optimization process, special care must be ta-
ken to ensure that the size and direction of the next step in this pro-
cess leads this value back inside the allowed range (this special
treatment is elaborated further in Section 4.4.3).

4.2. Objective functions

The criterion with respect to which the design is optimized is
called the objective function. It is a function of the design variables
and takes on a finite value for each point in the design space. As
was stated earlier, two different thermal boundary conditions,
(H) and (T), were considered in this work: thus, two different
objective functions were proposed, and the corresponding two sep-
arate optimization problems were solved. The goal in each of these
two optimization problems was to determine the shape of the fins
that maximize the chosen objective function, subject to imposed
constraints which are defined in the next subsection.

4.2.1. (H) Boundary condition
For this thermal boundary condition, q0w is constant everywhere

and Tw is uniform in any cross-section but varies axially. With re-
gard to the optimal thermal performance, it is proposed that in any
given cross-section in the fully developed region, the specified con-
stant value of q0w should be achieved with the minimum value of
(Tw � Tb): in dimensionless terms, this requirement is equivalent
to the maximization of 1=hb ¼ ðq0w=kf Þ=ðTw � TbÞ. Thus, using the
average Nusselt number for this case, NuðHÞav , as defined in Eq.
(13), the objective function for this boundary condition can be de-
fined as follows:

f ðHÞðXÞ ¼ NuðHÞav ðPeriwetted=DhÞ ð25Þ
4.2.2. (T) Boundary condition
For this thermal boundary condition, Tw is constant everywhere,

peripherally and axially. In this case, with regard to the optimal
thermal performance, it is proposed that in any given cross-section
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in the fully developed region, the maximum value of q0w should be
achieved with the minimum value of (Tw � Tb): in dimensionless
terms, this requirement is equivalent to the maximization of
ðq0w=kf Þ=ðTw � TbÞ. Thus, using the average Nusselt number for this
case, NuðTÞav , as defined in Eq. (18), the objective function for this
boundary condition can be defined as follows:

f ðTÞðXÞ ¼ NuðTÞav ðPeriwetted=DhÞ ð26Þ
4.3. Constraint function

In most practical problems, the design variables have to satisfy
certain specified functional and/or other requirements. Such
requirements are called design constraints. In this demonstration
problem, the chosen goal is the following: for a given combination
of internally finned duct, fin material, and fluid, identify the fin
shape that optimizes the thermal performance (maximizes the
above-mentioned objective functions) in the fully developed re-
gion for a specified constant pumping power needed to overcome
the viscous losses per unit length of the duct. This pumping power
per unit length for the laminar fully-developed flows of interest
can be expressed in terms of the axial gradient of the reduced pres-
sure as follows:

pp ¼ ð�dP=dzÞwavAc-s ð27Þ

where Ac-s is the total cross-sectional area for the fluid flow in the
internally finned duct. The requirement in the demonstration prob-
lem is that this pumping power per unit length must remain con-
stant (fixed) at a specified target value, pptarget, for the optimal
solution to be acceptable. In this context, the constraint function,
g(X), is based on the square of the difference between pp and pptar-

get, normalized with respect to pptarget, and the constraint require-
ment is to drive this function down to zero:

gðXÞ ¼ fðpp� pptargetÞ=pptargetg
2

¼ fðð�dP=dzÞwavAc-s � pptargetÞ=pptargetg
2 ¼ 0 ð28Þ

With this definition of g(X), the magnitude of its gradient decreases
monotonically as the optimization algorithm gets closer to the de-
sired value of X. This feature allows the use of a search method with
the step size proportional to this gradient, so that it decreases
monotonically, in an adaptive manner, until it becomes null when
the desired value of X is reached. Eq. (28) defines a hyper-plane
in the n-dimensional space spanned by the design variables. The
optimal solution must lie on this hyper-plane in order to satisfy
the constraint requirement.

4.4. Optimization algorithm

The proposed optimization algorithm is a variation of Rosen’s
gradient projection method [24], which, in turn, is based on the
more general class of gradient, or steepest descent, methods
[23,24,31]. The method is divided into two main parts: satisfaction
of the constraint function; and optimization of the objective func-
tion. A distinction is made between these two parts because the
corresponding search direction and step size are different. These
two parts of the optimization algorithm are presented in Sections
4.4.1 and 4.4.2. Then, a special treatment that is used to effect cor-
rections of the optimization path when the design point falls out-
side the allowed design space is presented in Section 4.4.3. Finally,
a note on the optimization parameters and a synopsis of the overall
algorithm are presented in Section 4.4.4.

4.4.1. Satisfaction of the constraint requirement
The initial point, Xini, at the start of the iterative optimization

procedure, can be anywhere in the design space and, in general,
will not be located on the constraint hyper-plane. In the proposed
optimization algorithm, the design point, X, is first moved on to the
constraint hyper-plane; following that, the search for the optimal
solution is carried out, while ensuring that X stays on this con-
straint hyper-plane.

The step-by-step process of moving the design point from its
initial location to the constraint hyper-plane is implemented as
follows:

Xmþ1 ¼ Xm þ kmSm ð29Þ

where Xm is the current design point, Xm+1 is the next design point,
Sm is the normalized search-direction vector, and km is the associ-
ated step size. The gradient of the constraint function and its norm
are defined as follows:

rgðXmÞ¼
@g
@x1

; . . . ;
@g
@xj

; . . . ;
@g
@xn

� �
m

; krgðXmÞk¼
Xn

j¼1

@g
@xj

� �2
( )1=2
2
4

3
5

m

ð30Þ

The gradient vector points in the direction of steepest ascent, thus
its negative value is used to define the normalized search-direction
vector in this part of the optimization algorithm, so as to ensure the
steepest descent towards the constraint requirement of g(Xm) = 0:

Sm ¼ �rgðXmÞ=krgðXmÞk ð31Þ

The step size, km, is selected as follows:

km ¼ kconstraintkrgðXmÞk=krgðXiniÞk ð32Þ

where kconstraint is a specified reference step size. This approach
makes it possible to start with a chosen initial step size,
kconstraint;ini, and ensure that each successive step size, which is pro-
portional to ||rg(Xm)||, decreases continuously and monotonically
as the constraint hyper-plane is approached. This gradient-based
search algorithm moves the design point, Xm, from its initial posi-
tion step-by-step towards the constraint hyper-plane until the fol-
lowing criterion is satisfied:

gðXmÞ � econstraint ð33Þ

Once this criterion is met, the design point is considered to have
satisfied the constraint requirement, and the search is then focused
on meeting the optimization criterion (maximization of the objec-
tive function) while keeping the design point on the constraint hy-
per-plane.

4.4.2. Maximization of the objective function
In order to obtain a search direction that allows an increase in

the value of the objective function while at the same time satisfy-
ing the constraint requirement, rf(Xm) is first projected onto the
constraint hyper-plane, which is normal to rg(Xm). This projected
vector is denoted as rfproj(Xm): it is graphically presented in Fig. 5
for a three-dimensional design space (n = 3). A step-by-step pro-
cess akin to that expressed in Eq. (29) is then used to move the de-
sign point along the constraint hyper-plane, with the normalized
search-direction vector, Sm, and step size, km, defined as follows:

Sm ¼ rfprojðXmÞ=krfprojðXmÞk; km ¼ kobjkrfprojðXmÞk=krfprojðXiniÞk
ð34Þ

The resulting search direction satisfies the constraint function (that
is, the design point is located within the specified tolerance,
econstraint, of the constraint hyper-plane), and it also moves the objec-
tive function towards its maximum value at the next step or design
point. Fig. 6 shows the behaviour of a sample optimization path in a
two-dimensional design space (n = 2): first, the design point is
moved towards the constraint hyper-plane; and once the constraint
requirement is achieved to within the specified tolerance, the afore-



Fig. 5. Projection of rf(Xm) onto the hyper-plane normal to rg(Xm) for a three-
dimensional design space (n = 3).

Fig. 6. Sample optimization path in a two-dimensional design space (n = 2).
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mentioned procedure is used to move the design point towards its
optimal location (which maximizes the objective function) along
the constraint hyper-plane.

4.4.3. Special treatment at the boundary of the design space
The optimization path, such as that shown in Fig. 6 for n = 2, can

sometimes lead outside the allowed design space: this situation
could be encountered, for example, when the constraint hyper-
plane is close to the limits of the dimensionless design variables,
xi = 0 or 1, or if the initial design point is located close to these lim-
its. If any particular step along the optimization path takes the de-
sign point outside the allowed design space, then the direction of
the optimization path must be corrected so that this design point
is moved back within the allowed design space. The special treat-
ment that is implemented to achieve such a correction depends on
the current state of the optimization procedure: that is, whether
the optimization path is in its first phase, and moving the design
point towards the constraint hyper-plane, or second phase, and
moving the design point along the constraint hyper-plane towards
the optimum solution (see the example given in Fig. 6 for n = 2).

If the optimization path is moving the design point towards the
constraint hyper-plane, the algorithm is navigating freely in the
design space: that is, it is not restricted to a constraint hyper-plane.
Thus, if a design-space boundary is encountered or crossed, the
corresponding step size, km, is maintained, but the search-direction
vector, Sm, is replaced by its projection onto the limiting hyper-
plane being crossed (xi = 0 or 1).

If the optimization path is moving the design point along the
constraint hyper-plane towards the optimum solution, the corre-
sponding step size, km, is again maintained, and the search-
direction vector, Sm, is corrected. However, now, the corrected
search-direction vector must not only be tangential to the limiting
hyper-plane being crossed, but it must also lie on the constraint
hyper-plane. This requirement is met using the following treat-
ment: first, the components of Sm andrg(Xm) normal to the limiting
hyper-plane being crossed are set to zero, making the remaining
portions of these two vectors tangential to the limiting hyper-
plane; then, the modified tangential portion of Sm is projected onto
the hyper-plane that is normal to the aforementioned tangential
portion of rg(Xm) .

4.4.4. Note on parameters and synopsis of algorithm
The parameters (step sizes and tolerances) involved in the pro-

posed optimization algorithm were assigned the following values
in the solution of the demonstration problem:

kconstraint;ini ¼ 0:1; kobj;ini ¼ 0:5kconstraint;ini;

econstraint;ini ¼ 0:02; efinal ¼ 10�5 ð35Þ

Starting with the initial values given in this equation, the tolerance,
econstraint, and the reference step sizes, kconstraint and kobj, are either ad-
justed or kept unchanged in accordance with the following proce-
dure: at any step, m, in the second phase of the optimization path
(when the focus is on moving the design point along the constraint
hyper-plane towards the optimum solution), if the maximum value
of the objective function, f(X), is overshot, that is f(Xm) < f(Xm�1),
then the inner product of the search-direction vectors at the current
and the previous steps, Sm�Sm � 1, is monitored; if this product is
negative, Sm�Sm � 1 < 0, for the following four consecutive steps
(m, m + 1, m + 2, m + 3), then econstraint is reduced by a factor of five,
and kconstraint and kobj are reduced by a factor of three; and if the
aforementioned condition is not met, econstraint, kconstraint , and kobj

are left unchanged. These adjustments cause the search to be done
with progressively smaller step sizes in the region of the design
space that is expected to contain the optimal solution, and also
move the search path progressively closer to the constraint hyper-
plane. The reductions of the tolerance and step sizes are continued
in this manner until the overall convergence criterion, namely, econ-

straint 6 efinal, is satisfied. This adjustment procedure and the afore-
mentioned reduction factors for econstraint, kconstraint , and kobj were
chosen on basis of numerous preliminary computational trials,
which showed that they allowed the optimal solution to be
achieved in a relatively efficient manner.

The overall optimization algorithm can be summarized as
follows:

1. Start with an initial design point, X0 (for example, the particular
baseline case of the demonstration problem that is being opti-
mized); assign initial values for econstraint, kconstraint , and kobj; set
S1 = 1; set the overall iteration or step counter to m = 1 (the
starting iteration number is m = 0); and calculate X1 using Eq.
(29).

2. Check if g(Xm) 6 econstraint: if no, go to step 3; if yes, the con-
straint requirement is satisfied and the search for the optimal
solution can be initiated, so go to step 4.

3. Using numerical differentiation of the CVFEM and FVM solu-
tions of the direct problem (see descriptions of the mathemat-
ical models and numerical solution methods in Section 2) at
the design point Xm�1 and a series of n different design points
Xj = [({xi}j = {xi}m�1 + km�1ðsiÞm�1dij; i = 1, 2, . . . , n) j = 1, 2, . . . , n],
where dij is the Kronecker delta function, calculate each compo-
nent of the gradient of the constraint function, rg(Xm); then
calculate Sm and km using the procedures described in Section
4.4.1; augment the step counter by one; calculate the new
design point Xm+1 using Eq. (29); use the special treatment pre-
sented in Section 4.4.3, if needed, to ensure that Xm+1 lies within
the allowed design space; and then return to Step 2.

4. Using numerical differentiation of the CVFEM and FVM solu-
tions of the direct problem at the design point Xm�1 and a series
of n different design points Xj = [({xi}j = {xi}m�1 + km�1ðsiÞm�1dij;
i = 1, 2, . . . , n) j = 1, 2, . . . , n], where dij is the Kronecker delta



Fig. 7. Representative cross-section (with spatial dimensions normalized with
respect to the duct radius, r) and fully-developed axial velocity contours in the
baseline cases of the demonstration problem: (a) Case 1 and (b) Case 2.
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function, calculate each component of the gradient of the objec-
tive function,rf(Xm); then calculaterfproj(Xm), Sm, and km using
the procedures described in Section 4.4.2; calculate the new
design point Xm+1 using Eq. (29); use the special treatment pre-
sented in Section 4.4.3, if needed, to ensure that Xm+1 lies within
the allowed design space; and augment the step counter by one.

5. Adjust econstraint, kconstraint , and kobj using the procedure described
at the start of this subsection.

6. Check if econst 6 efinal: if no, return to Step 2; if yes, the optimum
solution has been has been reached, so calculate any needed
additional results, store all desired results, and then terminate
the optimization procedure.

This gradient-based optimization methodology does not guar-
antee the absolute optimal solution, but it yields significant
improvements in thermal performance of internally finned ducts.
Sample results obtained for the aforementioned demonstration
problem are presented and discussed in the next section.

5. Results and discussion

As was mentioned earlier, the demonstration problem used in
this work involves steady, fully-developed, laminar forced convec-
tion in straight ducts (of circular cross-section) with non-twisted,
continuous, longitudinal fins. Air (kf = kair = 0.028 W/m �C) is the
working fluid, and the fin materials explored are stainless steel
(kfin = ks.s. = 15.1 W/m �C), aluminium (kfin = kAl = 237 W/m �C), and
copper (kfin = kCu = 401 W/m �C). A schematic illustration of a
cross-section of these ducts and the related notation used in this
work are shown in Fig. 1. The calculation domain and the related
nomenclature are presented in Fig. 2.

5.1. Cases considered

The proposed optimization methodology was applied to two
different baseline cases of the demonstration problem, denoted as
Cases 1 and 2, each with fins of triangular cross-section (starting
fin shape before application of the optimization methodology).
The performance yielded by the optimized fin shapes for each of
these cases was compared to that of the corresponding baseline.
For the baseline Case 1, the parameters were set to the following
values: dimensionless length of the fins l* = lf/r = 0.8; the number
of fins nfin = 8; and the angle of each fin at its base 2r = 6� = p/30
radians. For the baseline Case 2, the aforementioned parameters
were set equal to the following values: l* = lf/r = 0.6, nfin = 16, and
2r = 3� = p/60. For each of these baseline cases, the target pumping
power per unit length, pptarget, was determined with the duct ra-
dius set equal to r = 6.35 mm and a reduced pressure drop per unit
length (�dP/dz) that yielded a Reynolds number of Re = 100. Cross-
sections of these baseline internally finned ducts (with spatial
dimensions normalized with respect to the duct radius, r) and
the corresponding contours of dimensionless axial velocity (W)
are presented in Fig. 7(a) and (b), respectively.

In both of the aforementioned cases, the following minimum and
maximum values of the design variables relative to the radius, r, of
the duct were used: 0.01 6 (hi/r) 6 [(p/nfin){1 � (n � i)/(n � 1)}];
and 0.2 6 l* 6 0.9. The minimum value of (hi/r) was chosen to ensure
that for each fin, the local thickness did not take on values that made
it too delicate, from either the mechanical strength or manufacturing
points of view; and its maximum value was set so as to ensure that
for each fin, the local thickness did not exceed that of a triangular
fin with the same length as the optimal fin and a base thickness of
(2pr/nfin), the maximum geometrical value possible.

The improvement provided by an optimized duct over that of its
baseline case for the same pumping power per unit length was
quantified by calculating the following thermal performance
enhancement indices, which are the ratios of the corresponding
objective functions:

gðHÞ ¼ f ðHÞðXÞ
� 	

Optimized duct= f ðHÞðXÞ
� 	

Baseline case

h i
gðTÞ ¼ f ðTÞðXÞ

� 	
Optimized duct= f ðTÞðXÞ

� 	
Baseline case

h i ð36Þ
5.2. Discretization of the fluid flow and fin regions

The fluid flow and fin regions of the calculation domain were
discretized using CVFEM and FVM grids, respectively, akin to those
shown in Fig. 3(a) and (b). The total number of nodes along the bot-
tom symmetry plane, L + N, was specified. Next, the value of L was
obtained using the following equation:

L ¼ Closest integer roundoff of ½ðLþ NÞðlf =rÞ� ð37Þ

N was then set equal to (L + N) � L. The portion of the calculation
domain beyond L + 1 in the x direction was discretized into triangu-
lar elements, each with the longest side oriented in the top-left-to-
bottom-right direction, matching the top symmetry plane; and in
this portion of the calculation domain, the numbers of nodes in
the x and the y directions were the same and the node spacing
was uniform. For the remaining portion of the calculation domain,
once the positions of the control points were set (in each step of
the optimization procedure) and the NURBS curve was computed,
the grid points (nodes) along the fin surface were distributed uni-
formly on the NURBS curve. Then, the nodes on the duct wall were
also distributed equidistantly between the first control point and
the bottom symmetry plane. The positions of the remaining interior
nodes were interpolated linearly between the surrounding bound-
ing nodes, and then the horizontal position of each of these nodes
set to averages of those of the four surrounding nodes: the resulting
grid patterns were akin to that shown in Fig. 3(a) and (b).

Numerous preliminary investigations were carried out using
ducts with internal fins of fixed triangular cross-section (akin to
the aforementioned two baseline cases of this demonstration prob-
lem) and successively finer computational grids. The results of
these preliminary investigations were then used in an extrapola-
tion scheme, akin to that proposed by Richardson, to obtain essen-
tially grid-independent solutions. These tests showed that grids
with (L + N) = 50 give results that are within 0.05% of the aforemen-
tioned essentially grid-independent solutions. The final computa-
tions were all carried out with (L + N) = 50.

5.3. Effect of the number of control points

The effect of the number of control points (the design variables)
on the shape of the optimized fin was investigated for the Case 1
baseline problem with the (H) thermal boundary condition and



Table 1
Results provided by the optimization methodology for Case 1.

nfin Stainless steel Aluminium Copper

g(H) g(T) g(H) g(T) g(H) g(T)

5 1.1850 0.9284 1.1711 – 0.8374 –
6 1.2547 1.0921 1.3206 1.0879 1.2221 1.0822
7 1.1578 1.2192 1.1652 1.1532 1.1560 1.1784
8 1.0593 1.1082 1.0459 1.1017 1.0452 1.1092
9 0.9132 0.7661 0.9121 0.7477 0.9622 0.7602

10 0.6253 0.3336 0.6206 0.3278 0.6255 0.3407
11 0.3676 0.2234 0.3948 0.2147 0.3823 0.2158
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the number of fins fixed at nfin = 8. The proposed optimization
methodology was applied to this problem with the five different
values of the number of control points: n = 4, 6, 9, 12, and 15.
The resulting optimized fin shapes are presented in Fig. 8(a)–(e):
the continuous curve on the left side of each of these figures is a
part of the perimeter of the circular cross-section of the duct; the
long-and-short dashed lines represent radial symmetry surfaces;
the control-point locations are indicated by the square symbols
(h); the piecewise-straight lines joining these symbols constitute
the control polygons; and the fin shapes are indicated by the solid
curves along the top of each figure, immediately adjacent to the
corresponding control polygons. With n = 4 and 6, the optimized
fin shape has a bulge in its central region; and with n = 9, 12, and
15, the optimized fin shape has two bulges along its length, and
its base width is larger than that of the baseline triangular fin.
The optimized fin shapes obtained with n = 12 and 15 are very sim-
ilar; there is only a slight difference in the widths of the fin base,
which for n = 15 is slightly larger than that for n = 12. Based on
these results, it was concluded that n = 12 is adequate for demon-
strating the capabilities of the proposed optimization
methodology.

5.4. Optimized internally finned ducts

The proposed optimization methodology was applied to the
aforementioned two baseline problems, Cases 1 and 2, with the
number of control points (design variables) fixed at n = 12 in each
case. For Case 1 (the baseline case with eight internal fins of trian-
gular cross-section), the fin shape was optimized for the following
seven different values of the number of fins: nfin = 5, 6, 7, 8, 9, 10,
and 11. For Case 2 (the baseline case with 16 internal fins of trian-
gular cross-section), the fin shape was optimized for the following
seven different values of the number of fins: nfin = 7, 8, 9, 10, 12, 14,
and 16. The performance improvement indices for Case 1 are sum-
marized in Table 1 for both the (H) and (T) boundary conditions,
and the corresponding normalized fin shapes and contours of
dimensionless axial velocity (W) are presented graphically in
Fig. 9(a) and (b), respectively. For Case 2, these results are summa-
rized in Table 2 and presented graphically in Fig. 10(a) and (b).

The quantitative results presented in Tables 1 and 2 show that at
constant pumping power per unit length, the following increases in
Fig. 8. Effect of the number of control points on the optimized fi
thermal performance of the optimized ducts relative to that of the
corresponding baseline cases are obtained: for Case 1 and the (H)
thermal boundary condition, nfin = 6 yields g(H) values of 1.2547,
1.3206, and 1.2221 for the stainless steel, aluminium, and copper
fins, respectively; for Case 1 and the (T) thermal boundary condition,
nfin = 7 yields g(T) values of 1.2192, 1.1532, and 1.1784 for the stain-
less steel, aluminium, and copper fins, respectively; for Case 2 and
the (H) thermal boundary condition, nfin = 8 yields g(H) values of
7.6800, 7.5813, and 7.6325 for the stainless steel, aluminium, and
copper fins, respectively; and for Case 2 and the (T) thermal bound-
ary condition, nfin = 9 yields g(T) values of 10.681, 10.496, and 10.614
for the stainless steel, aluminium, and copper fins, respectively. For
Case 1, the fluid flow in the baseline problem is already fairly well dis-
tributed in the regions between the fins, as shown by the dimension-
less axial velocity contours in Fig. 7(a): thus, the improvements in
thermal performance yielded by the optimized ducts are relatively
modest for this case. On the other hand, for Case 2, the fluid flow in
the baseline problem is rather poorly distributed, with most of it in
the central region of the duct and only relatively low-velocity flow
in the regions between the fins, as shown by the dimensionless axial
velocity contours in Fig. 7(b): thus, the optimized ducts provide dra-
matic improvements in the relative thermal performance for this
case.

6. Conclusion

A computational methodology for the optimization of conjugate
convective and conductive heat transfer in internally finned ducts
was formulated and demonstrated in the earlier sections of this
n shape for Case 1 with the number of fins fixed at nfin = 8.



Fig. 9. Optimal fin shapes and fully-developed dimensionless axial velocity contours for Case 1: (a) (H) boundary condition and (b) (T) boundary condition.

Table 2
Results provided by the optimization methodology for Case 2.

nfin Stainless steel Aluminium Copper

g(H) g(T) g(H) g(T) g(H) g(T)

7 7.0655 8.9105 7.4590 6.7556 7.4877 8.2802
8 7.6800 8.7990 7.5813 8.7996 7.6325 8.1858
9 7.1425 10.681 7.1011 10.496 7.0760 10.614

10 6.2510 9.5603 6.4299 9.5827 6.4631 9.5480
12 4.3496 2.9840 4.3766 3.0626 4.3676 3.0671
14 1.8662 1.4303 1.8572 1.4369 1.8563 1.4217
16 1.0284 1.0135 1.0237 1.0104 1.0235 1.0168
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paper. The particular optimization criterion used was the maximi-
zation of the thermal performance for a fixed specified value of the
pumping power per unit length, but the proposed methodology
Fig. 10. Optimal fin shapes and fully-developed dimensionless axial velocity con
can be adapted to work with other suitable optimization criteria.
The shapes of the internal fins were approximated using non-uni-
form rational B-splines (NURBS), with the control points as design
variables. A two-stage iterative solution methodology was pro-
posed and demonstrated: in the first stage, a control-volume finite
element method (CVFEM) and a finite volume method (FVM) are
used to solve the so-called direct problem, namely, the mathemat-
ical models of conjugate convection in the fluid and quasi one-
dimensional conduction inside the fins, respectively; in the second
stage, an optimization algorithm, based on a gradient approach and
inputs from solutions of the aforementioned direct problem, is
used to calculate a new geometry of the internally finned duct that
moves it towards the desired design; and these two stages are used
sequentially and repeatedly until the solution is optimal within a
specified tolerance.
tours for Case 2: (a) (H) boundary condition and (b) (T) boundary condition.
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The proposed overall optimization methodology was demon-
strated in the context of steady, fully-developed, laminar forced
convection in straight ducts of circular cross-section, with non-
twisted, continuous, longitudinal fins. Air was the working fluid,
and the fin materials explored were stainless steel, aluminium,
and copper. Results pertaining to the maximization of the thermal
performance, subject to the constraint of constant pumping power
per unit length, were presented and discussed for two baseline
cases of the demonstration problem. When the fluid flow in the
baseline problem is already fairly well distributed in the regions be-
tween the fins, as in Case 1 of the demonstration problem, the
improvements in thermal performance yielded by the optimized
ducts are relatively modest. On the other hand, when the fluid flow
in the baseline problem is rather poorly distributed, with most of it
in the central region of the duct and only relatively low-velocity
flow in the regions between the fins, as in Case 2 of the demonstra-
tion problem, the optimized ducts provide dramatic improvements
in the relative thermal performance.

The proposed computational optimization methodology does not
guarantee the absolute optimal solution for each problem, as its gra-
dient-based search method may lock in on a local maximum, should
one exist, rather than the absolute maximum. However, it provides a
useful way of achieving significant improvements in the relative
thermal performance of internally finned ducts, as was shown by
the results obtained for the demonstration problem. In the solution
of this problem, the gradients required in the optimization algorithm
were obtained using direct numerical differentiation of results
yielded by the CVFEM and FVM solutions of the intermediate direct
problems. To make the proposed methodology viable for the solu-
tion of more complex engineering problems, it is recommend that
the aforementioned gradients be obtained using either continuous
sensitivity equations (CSE) or adjoint methods [25,38,41,61].
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